Speech enhancement and recognition using multi-task learning of long short-term memory recurrent neural networks

نویسندگان

  • Zhuo Chen
  • Shinji Watanabe
  • Hakan Erdogan
  • John R. Hershey
چکیده

Long Short-Term Memory (LSTM) recurrent neural network has proven effective in modeling speech and has achieved outstanding performance in both speech enhancement (SE) and automatic speech recognition (ASR). To further improve the performance of noise-robust speech recognition, a combination of speech enhancement and recognition was shown to be promising in earlier work. This paper aims to explore options for consistent integration of SE and ASR using LSTM networks. Since SE and ASR have different objective criteria, it is not clear what kind of integration would finally lead to the best word error rate for noise-robust ASR tasks. In this work, several integration architectures are proposed and tested, including: (1) a pipeline architecture of LSTM-based SE and ASR with sequence training, (2) an alternating estimation architecture, and (3) a multi-task hybrid LSTM network architecture. The proposed models were evaluated on the 2nd CHiME speech separation and recognition challenge task, and show significant improvements relative to prior results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

Feature enhancement by deep LSTM networks for ASR in reverberant multisource environments

This article investigates speech feature enhancement based on deep bidirectional recurrent neural networks. The Long Short-Term Memory (LSTM) architecture is used to exploit a self-learnt amount of temporal context in learning the correspondences of noisy and reverberant with undistorted speech features. The resulting networks are applied to feature enhancement in the context of the 2013 2nd Co...

متن کامل

Robust speech recognition using long short-term memory recurrent neural networks for hybrid acoustic modelling

One method to achieve robust speech recognition in adverse conditions including noise and reverberation is to employ acoustic modelling techniques involving neural networks. Using long short-term memory (LSTM) recurrent neural networks proved to be efficient for this task in a setup for phoneme prediction in a multi-stream GMM-HMM framework. These networks exploit a self-learnt amount of tempor...

متن کامل

The Tum+tut+kul Approach to the 2nd Chime Challenge: Multi-stream Asr Exploiting Blstm Networks and Sparse Nmf

We present our joint contribution to the 2nd CHiME Speech Separation and Recognition Challenge. Our system combines speech enhancement by supervised sparse non-negative matrix factorisation (NMF) with a multi-stream speech recognition system. In addition to a conventional MFCC HMM recogniser, predictions by a bidirectional Long Short-Term Memory recurrent neural network (BLSTM-RNN) and from non...

متن کامل

On Design of Robust Deep Models for CHiME-4 Multi-Channel Speech Recognition with Multiple Configurations of Array Microphones

We design a novel deep learning framework for multi-channel speech recognition in two aspects. First, for the front-end, an iterative mask estimation (IME) approach based on deep learning is presented to improve the beamforming approach based on the conventional complex Gaussian mixture model (CGMM). Second, for the back-end, deep convolutional neural networks (DCNNs), with augmentation of both...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015